LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of annealing temperature on degradation efficiency and iron oxide transformations in CeO2/Fe-oxide sorbents

Photo from wikipedia

The microstructural and physical properties of magnetically separable CeO2 (5 wt.%)/Fe-oxide sorbents, applicable for the decomposition of organophosphorus pesticides, are analyzed in dependence on calcination temperature. The sorbents are prepared… Click to show full abstract

The microstructural and physical properties of magnetically separable CeO2 (5 wt.%)/Fe-oxide sorbents, applicable for the decomposition of organophosphorus pesticides, are analyzed in dependence on calcination temperature. The sorbents are prepared using a two-step procedure: (1) synthesis of magnetite core from cheap and commercially available raw materials; and (2) the formation of cerium (III) carbonate by precipitation with the ammonium hydrogen carbonate, containing re-dispersed magnetite. The cerous carbonate/magnetite precursor is annealed in a muffle furnace at temperatures ranging from 473 to 1073 K for 2 h to obtain the CeO2/Fe-oxide reactive sorbents. Structural characterization of the samples is performed using X-ray diffraction, scanning electron microscopy, Raman and Fourier transform infrared spectroscopy. Magnetic properties are obtained from hysteresis loops, field-cooled and zero-field-cooled curves, first-order reversal curve (FORC) diagrams, and Henkel plots. Sorbents exhibit an increase in coercivity from 0.2 kA/m to about 20 kA/m and a decrease in saturation magnetization from roughly 50 Am2/kg to 1 Am2/kg after annealing at 973 K. This deterioration of magnetic properties is caused by the transformation of magnetite and maghemite into weakly ferromagnetic hematite, with a typical peak in FORC diagram and a Morin transition at about 200 K. The degradation efficiency towards parathion and paraoxon methyl is about 30% for samples annealed from 473 K to 773 K.

Keywords: degradation efficiency; oxide sorbents; temperature; ceo2 oxide

Journal Title: AIP Advances
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.