Detection of pulmonary nodules on chest x-rays is an important task for radiologists. Previous studies have shown improved detection rates using gray-scale inversion. The purpose of our study was to… Click to show full abstract
Detection of pulmonary nodules on chest x-rays is an important task for radiologists. Previous studies have shown improved detection rates using gray-scale inversion. The purpose of our study was to compare the efficacy of gray-scale inversion in improving the detection of pulmonary nodules on chest x-rays for radiologists and machine learning models (ML). We created a mixed dataset consisting of 60, 2-view (posteroanterior view - PA and lateral view) chest x-rays with computed tomography confirmed nodule(s) and 62 normal chest x-rays. Twenty percent of the cases were separated for a testing dataset (24 total images). Data augmentation through mirroring and transfer learning was used for the remaining cases (784 total images) for supervised training of 4 ML models (grayscale PA, grayscale lateral, gray-scale inversion PA, and gray-scale inversion lateral) on Google's cloud-based AutoML platform. Three cardiothoracic radiologists analyzed the complete 2-view dataset (n=120) and, for comparison to the ML, the single-view testing subsets (12 images each). Gray-scale inversion (area under the curve (AUC) 0.80, 95% confidence interval (CI) 0.75-0.85) did not improve diagnostic performance for radiologists compared to grayscale (AUC 0.84, 95% CI 0.79-0.88). Gray-scale inversion also did not improve diagnostic performance for the ML. The ML did demonstrate higher sensitivity and negative predictive value for grayscale PA (72.7% and 75.0%), grayscale lateral (63.6% and 66.6%), and gray-scale inversion lateral views (72.7% and 76.9%), comparing favorably to the radiologists (63.9% and 72.3%, 27.8% and 58.3%, 19.5% and 50.5% respectively). In the limited testing dataset, the ML did demonstrate higher sensitivity and negative predictive value for grayscale PA (72.7% and 75.0%), grayscale lateral (63.6% and 66.6%), and gray-scale inversion lateral views (72.7% and 76.9%), comparing favorably to the radiologists (63.9% and 72.3%, 27.8% and 58.3%, 19.5% and 50.5%, respectively). Further investigation of other post-processing algorithms to improve diagnostic performance of ML is warranted.
               
Click one of the above tabs to view related content.