LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient Hydrolytic Breakage of β-1,4-Glycosidic Bond Catalyzed by a Difunctional Magnetic Nanocatalyst

Photo by vlisidis from unsplash

A novel difunctional magnetic nanocatalyst (DMNC) was prepared and used to catalyse the hydrolytic breakage of β-1,4-glycosidic bonds. The functional nanoparticle displayed excellent catalytic activity for hydrolysis of cellobiose to… Click to show full abstract

A novel difunctional magnetic nanocatalyst (DMNC) was prepared and used to catalyse the hydrolytic breakage of β-1,4-glycosidic bonds. The functional nanoparticle displayed excellent catalytic activity for hydrolysis of cellobiose to glucose under moderate conditions. The conversion of cellobiose and yield of glucose could reach 95.3 and 91.1 %, respectively, for a reaction time of 6 h at pH 4.0 and 130°C. DMNC was also an efficient catalyst for the hydrolysis of cellulose: 53.9 % microcrystalline cellulose was hydrolyzed, and 45.7 % reducing sugar was obtained at pH 4.0 and 130°C after 10 h. The magnetic catalyst could be recycled and reused five times without significant loss of catalytic activity.

Keywords: breakage glycosidic; difunctional magnetic; magnetic nanocatalyst; hydrolytic breakage

Journal Title: Australian Journal of Chemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.