We evaluate the three-centre two-electron (3c-2e) bonds using atoms in molecules (AIM) and natural bond orbital (NBO) theoretical analyses. They have been classified as ‘open (V)’ or ‘closed (Δ)’, depending… Click to show full abstract
We evaluate the three-centre two-electron (3c-2e) bonds using atoms in molecules (AIM) and natural bond orbital (NBO) theoretical analyses. They have been classified as ‘open (V)’ or ‘closed (Δ)’, depending on how the three centres were bonded. Herein, we show that they could be classified as V, L, Δ, Y, T and I (linear) arrangements depending on the way the three centres are bonded. These different structures are found in B2H6 (V), CH5+ (V), Me-C2H2+ (L), B3+ (Δ), C3H3+ (Δ), H3+ (Y), 2-norbornyl+ (T), SiH5+ (T), and Al2H7− (I). Our results suggest that CH3Li2+ does not contain a 3c-2e bond according to NBO analysis. Therefore, we propose that 3c-2e bonds are classified more accurately as V, L, Δ, Y, T, or I, based on the electron density topology.
               
Click one of the above tabs to view related content.