LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Detailed Classification of Three-Centre Two-Electron Bonds

Photo by vlisidis from unsplash

We evaluate the three-centre two-electron (3c-2e) bonds using atoms in molecules (AIM) and natural bond orbital (NBO) theoretical analyses. They have been classified as ‘open (V)’ or ‘closed (Δ)’, depending… Click to show full abstract

We evaluate the three-centre two-electron (3c-2e) bonds using atoms in molecules (AIM) and natural bond orbital (NBO) theoretical analyses. They have been classified as ‘open (V)’ or ‘closed (Δ)’, depending on how the three centres were bonded. Herein, we show that they could be classified as V, L, Δ, Y, T and I (linear) arrangements depending on the way the three centres are bonded. These different structures are found in B2H6 (V), CH5+ (V), Me-C2H2+ (L), B3+ (Δ), C3H3+ (Δ), H3+ (Y), 2-norbornyl+ (T), SiH5+ (T), and Al2H7− (I). Our results suggest that CH3Li2+ does not contain a 3c-2e bond according to NBO analysis. Therefore, we propose that 3c-2e bonds are classified more accurately as V, L, Δ, Y, T, or I, based on the electron density topology.

Keywords: three centre; electron bonds; two electron; detailed classification; centre two

Journal Title: Australian Journal of Chemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.