LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Forage biomass yield and arbuscular mycorrhizal symbiosis in a legume and C3 and C4 grasses under increasing soil phosphorus availability

Photo from wikipedia

Abstract. Phosphorus (P) is the main limiting factor for forage production in grasslands. It is important to determine levels of available P in soil that optimise production with minimum impact… Click to show full abstract

Abstract. Phosphorus (P) is the main limiting factor for forage production in grasslands. It is important to determine levels of available P in soil that optimise production with minimum impact on arbuscular mycorrhizal (AM) symbiosis. We investigated the effects of increasing P availability on biomass production, root morphology, AM symbiosis and P acquisition of a forage legume (Lotus tenuis), a C3 grass (Schedonorus arundinaceus) and a C4 grass (Panicum coloratum) growing on a P-deficient soil in pots with P applied at rates of 0–160 mg kg–1 dry soil. The three forage species responded strongly to addition of P, with 90% of maximum shoot growth reached at available P levels of 24.3 mg kg–1 for L. tenuis, 14.4 mg kg–1 for P. coloratum and 11.2 mg kg–1 for S. arundinaceus. Lotus tenuis and P. coloratum produced higher yields of shoot biomass than S. arundinaceus. Root dry weight was higher in the legume than in the grasses, with the root-mass fraction being lowest in P. coloratum. AM colonisation was higher in L. tenuis roots than in grass roots, and decreased with increased soil P availability, especially in grasses. Low to moderate additions of P did not affect, and could even improve, AM colonisation in L. tenuis roots. For L. tenuis, it is possible to increase forage yield while maintaining high values of AM colonisation at 10–20 mg kg–1 of available P, but for grasses, especially S. arundinaceus, it is difficult to achieve both objectives. The presence of L. tenuis in grasslands or pastures may contribute to maintaining the native AM inoculum under a wide range of soil P availability in regions such as the Salado River basin of Argentina.

Keywords: legume; soil; forage; availability; biomass; symbiosis

Journal Title: Crop and Pasture Science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.