LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimising the design of large-scale acoustic telemetry curtains

Photo from wikipedia

Broad-scale acoustic telemetry networks are being established worldwide. The 10-year anniversary of the Integrated Marine Observing System’s Animal Tracking Facility provided the opportunity to assess the efficiency of one of… Click to show full abstract

Broad-scale acoustic telemetry networks are being established worldwide. The 10-year anniversary of the Integrated Marine Observing System’s Animal Tracking Facility provided the opportunity to assess the efficiency of one of the first national-scale acoustic telemetry networks. Acoustic networks are comprised of acoustic receiver arrays that detect high-frequency transmitters attached to animals that pass within detection range. Herein we assessed the efficiency of eight curtains to detect passing animals by calculating the standardised mean number of detections and transmitters detected at each station. The aim was to determine how many receivers could be decommissioned from each curtain while maintaining its integrity (i.e. detection of all species passing the array). Pivotal locations were defined as the furthest station at which all species would still be detected and where at least 75% of the detections and transmitters would still be detected. By applying these criteria, we were able to improve the cost-effectiveness of our network significantly, reducing the number of stations from 132 to 85 (64% of the original network), yet still retaining 84% of total detections, 86% of transmitters and 100% of detected species. The present study provides a useful framework for refining acoustic telemetry networks.

Keywords: scale acoustic; optimising design; acoustic telemetry; telemetry networks; telemetry; detections transmitters

Journal Title: Marine and Freshwater Research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.