LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Soils of the Brazilian Coastal Plains biome: prediction of chemical attributes via portable X-ray fluorescence (pXRF) spectrometry and robust prediction models

Photo by neom from unsplash

Portable X-ray fluorescence (pXRF) spectrometry has been successfully used for soil attribute prediction. However, recent studies have shown that accurate predictions may vary according to soil type and environmental conditions,… Click to show full abstract

Portable X-ray fluorescence (pXRF) spectrometry has been successfully used for soil attribute prediction. However, recent studies have shown that accurate predictions may vary according to soil type and environmental conditions, motivating investigations in different biomes. Hence, this work attempted to accurately predict soil pH, sum of bases (SB), cation exchange capacity (CEC) at pH 7.0 and base saturation (BS) using pXRF-obtained data with high variability and robust prediction models in the Brazilian Coastal Plains biome. A total of 285 soil samples were collected to generate prediction models for A (n = 123), B (n = 162) and A+B (n = 285) horizons through stepwise multiple linear regression, support vector machine with linear kernel (SVM) and random forest. Data were divided into calibration (75%) and validation (25%) sets. Accuracy of the predictions was assessed by coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE) and residual prediction deviation (RPD). The A+B horizons dataset had optimal performance, especially for SB predictions using SVM, achieving R2 = 0.82, RMSE = 1.02 cmolc dm–3, MAE = 1.17 cmolc dm–3 and RPD = 2.33. The most important predictor variable was Ca. Predictions using pXRF data were accurate especially for SB. Limitations of the predictions caused by soil classes and environmental conditions should be further investigated in other regions.

Keywords: pxrf; ray fluorescence; prediction models; portable ray; soil; prediction

Journal Title: Soil Research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.