LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impact of burn severity on soil properties in a Pinus pinaster ecosystem immediately after fire

Photo by gabrielj_photography from unsplash

We analyse the effects of burn severity on individual soil properties and soil quotients in Mediterranean fire-prone pine forests immediately after a wildfire. Burn severity was measured in the field… Click to show full abstract

We analyse the effects of burn severity on individual soil properties and soil quotients in Mediterranean fire-prone pine forests immediately after a wildfire. Burn severity was measured in the field through the substrate stratum of the Composite Burn Index and soil samples were taken 7–9 days after a wildfire occurred in a Pinus pinaster Ait. ecosystem. In each soil sample, we analysed physical (size of soil aggregates), chemical (pH, organic C, total N and available P) and biological (microbial biomass C, β-glucosidase, urease and acid phosphatase activities) properties. Size of aggregates decreased in the areas affected by high burn severity. Additionally, moderate and high severities were associated with increases in pH and available P concentration and with decreases in organic C concentration. Microbial biomass C showed similar patterns to organic C along the burn severity gradient. The enzymatic activities of phosphatase and β-glucosidase showed the highest sensitivity to burn severity, as they strongly decreased from the low-severity scenarios. Among the studied soil quotients, the C:N ratio, microbial quotient and β-glucosidase:microbial biomass C quotient decreased with burn severity. This work provides valuable information on the impact of burn severity on the functioning of sandy siliceous soils in fire-prone pine ecosystems.

Keywords: pinus pinaster; burn severity; soil properties; severity; impact burn

Journal Title: International Journal of Wildland Fire
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.