LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Resonance with subthreshold oscillatory drive organizes activity and optimizes learning in neural networks

Photo by alterego_swiss from unsplash

Significance Networks of neurons need to reliably encode and replay patterns and sequences of activity. In the brain, sequences of spatially coding neurons are replayed in both the forward and… Click to show full abstract

Significance Networks of neurons need to reliably encode and replay patterns and sequences of activity. In the brain, sequences of spatially coding neurons are replayed in both the forward and reverse direction in time with respect to their order in recent experience. As of yet there is no network-level or biophysical mechanism known that can produce both modes of replay within the same network. Here we propose that resonance, a property of neurons, paired with subthreshold oscillations in neural input facilitate network-level learning of fixed and sequential activity patterns and lead to both forward and reverse replay. Network oscillations across and within brain areas are critical for learning and performance of memory tasks. While a large amount of work has focused on the generation of neural oscillations, their effect on neuronal populations’ spiking activity and information encoding is less known. Here, we use computational modeling to demonstrate that a shift in resonance responses can interact with oscillating input to ensure that networks of neurons properly encode new information represented in external inputs to the weights of recurrent synaptic connections. Using a neuronal network model, we find that due to an input current-dependent shift in their resonance response, individual neurons in a network will arrange their phases of firing to represent varying strengths of their respective inputs. As networks encode information, neurons fire more synchronously, and this effect limits the extent to which further “learning” (in the form of changes in synaptic strength) can occur. We also demonstrate that sequential patterns of neuronal firing can be accurately stored in the network; these sequences are later reproduced without external input (in the context of subthreshold oscillations) in both the forward and reverse directions (as has been observed following learning in vivo). To test whether a similar mechanism could act in vivo, we show that periodic stimulation of hippocampal neurons coordinates network activity and functional connectivity in a frequency-dependent manner. We conclude that resonance with subthreshold oscillations provides a plausible network-level mechanism to accurately encode and retrieve information without overstrengthening connections between neurons.

Keywords: resonance subthreshold; information; network; forward reverse; activity

Journal Title: Proceedings of the National Academy of Sciences of the United States of America
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.