LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

MinE conformational switching confers robustness on self-organized Min protein patterns

Photo from wikipedia

Significance Many fundamental cellular processes are spatially regulated by self-organized protein patterns, which are often based on nucleotide-binding proteins that switch their nucleotide state upon interaction with a second, activating… Click to show full abstract

Significance Many fundamental cellular processes are spatially regulated by self-organized protein patterns, which are often based on nucleotide-binding proteins that switch their nucleotide state upon interaction with a second, activating protein. For reliable function, these protein patterns must be robust against parameter changes, although the basis for such robustness is generally elusive. Here we take a combined theoretical and experimental approach to the Escherichia coli Min system, a paradigmatic system for protein self-organization. By mathematical modeling and in vitro reconstitution of mutant proteins, we demonstrate that the robustness of pattern formation is dramatically enhanced by an interlinked functional switching of both proteins, rather than one. Such interlinked functional switching could be a generic means of obtaining robustness in biological pattern-forming systems. Protein patterning is vital for many fundamental cellular processes. This raises two intriguing questions: Can such intrinsically complex processes be reduced to certain core principles and, if so, what roles do the molecular details play in individual systems? A prototypical example for protein patterning is the bacterial Min system, in which self-organized pole-to-pole oscillations of MinCDE proteins guide the cell division machinery to midcell. These oscillations are based on cycling of the ATPase MinD and its activating protein MinE between the membrane and the cytoplasm. Recent biochemical evidence suggests that MinE undergoes a reversible, MinD-dependent conformational switch from a latent to a reactive state. However, the functional relevance of this switch for the Min network and pattern formation remains unclear. By combining mathematical modeling and in vitro reconstitution of mutant proteins, we dissect the two aspects of MinE’s switch, persistent membrane binding and a change in MinE’s affinity for MinD. Our study shows that the MinD-dependent change in MinE’s binding affinity for MinD is essential for patterns to emerge over a broad and physiological range of protein concentrations. Mechanistically, our results suggest that conformational switching of an ATPase-activating protein can lead to the spatial separation of its distinct functional states and thereby confer robustness on an intracellular protein network with vital roles in bacterial cell division.

Keywords: protein; self organized; mind; protein patterns; min; conformational switching

Journal Title: Proceedings of the National Academy of Sciences of the United States of America
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.