LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Entorhinal fast-spiking speed cells project to the hippocampus

Photo by indiratjokorda from unsplash

Significance Our location in space is represented by a spectrum of space and direction-responsive cell types in medial entorhinal cortex and hippocampus. Many cells in these areas respond also to… Click to show full abstract

Significance Our location in space is represented by a spectrum of space and direction-responsive cell types in medial entorhinal cortex and hippocampus. Many cells in these areas respond also to running speed. The presence of local speed-tuned cells is considered a requirement for position to be encoded in a self-motion–dependent manner; however, whether and how speed-responsive cells in entorhinal cortex and hippocampus are functionally connected have not been determined. The present study shows that a large proportion of entorhinal speed cells are fast-spiking with properties similar to those of GABAergic interneurons and that outputs from a subset of these cells, particularly the parvalbumin-expressing subset, form a component of the medial entorhinal input to the hippocampus. The mammalian positioning system contains a variety of functionally specialized cells in the medial entorhinal cortex (MEC) and the hippocampus. In order for cells in these systems to dynamically update representations in a way that reflects ongoing movement in the environment, they must be able to read out the current speed of the animal. Speed is encoded by speed-responsive cells in both MEC and hippocampus, but the relationship between the two populations has not been determined. We show here that many entorhinal speed cells are fast-spiking putative GABAergic neurons. Using retrograde viral labeling from the hippocampus, we find that a subset of these fast-spiking MEC speed cells project directly to hippocampal areas. This projection contains parvalbumin (PV) but not somatostatin (SOM)-immunopositive cells. The data point to PV-expressing GABAergic projection neurons in MEC as a source for widespread speed modulation and temporal synchronization in entorhinal–hippocampal circuits for place representation.

Keywords: fast spiking; hippocampus; speed cells; speed; cells project; medial entorhinal

Journal Title: Proceedings of the National Academy of Sciences of the United States of America
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.