LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Targeting β1-integrin inhibits vascular leakage in endotoxemia

Photo by starofthesea7 from unsplash

Significance Compromised vascular integrity is associated with capillary leakage in sepsis, but effective therapies stabilizing the vasculature are lacking. Here, we show that targeting β1-integrin in vivo with inhibitory antibodies… Click to show full abstract

Significance Compromised vascular integrity is associated with capillary leakage in sepsis, but effective therapies stabilizing the vasculature are lacking. Here, we show that targeting β1-integrin in vivo with inhibitory antibodies or deletion of a single allele of endothelial β1-integrin inhibits lipopolysaccharide (LPS)-induced vascular leakage in murine endotoxemia. The inflammatory agents IL-1β, thrombin, and LPS induced changes in endothelial cell–extracellular matrix (ECM) adhesion via β1-integrin, angiopoietin-2, and the adapter protein tensin-1, leading to increased endothelial cell contractility and permeability. These results indicate that β1-integrin actively promotes vascular leakage and that targeting β1-integrin signaling could be a novel means of achieving vascular stabilization in pathological vascular leak. Loss of endothelial integrity promotes capillary leakage in numerous diseases, including sepsis, but there are no effective therapies for preserving endothelial barrier function. Angiopoietin-2 (ANGPT2) is a context-dependent regulator of vascular leakage that signals via both endothelial TEK receptor tyrosine kinase (TIE2) and integrins. Here, we show that antibodies against β1-integrin decrease LPS-induced vascular leakage in murine endotoxemia, as either a preventative or an intervention therapy. β1-integrin inhibiting antibodies bound to the vascular endothelium in vivo improved the integrity of endothelial cell–cell junctions and protected mice from endotoxemia-associated cardiac failure, without affecting endothelial inflammation, serum proinflammatory cytokine levels, or TIE receptor signaling. Moreover, conditional deletion of a single allele of endothelial β1-integrin protected mice from LPS-induced vascular leakage. In endothelial monolayers, the inflammatory agents thrombin, lipopolysaccharide (LPS), and IL-1β decreased junctional vascular endothelial (VE)-cadherin and induced actin stress fibers via β1- and α5-integrins and ANGPT2. Additionally, β1-integrin inhibiting antibodies prevented inflammation-induced endothelial cell contractility and monolayer permeability. Mechanistically, the inflammatory agents stimulated ANGPT2-dependent translocation of α5β1-integrin into tensin-1–positive fibrillar adhesions, which destabilized the endothelial monolayer. Thus, β1-integrin promotes endothelial barrier disruption during inflammation, and targeting β1-integrin signaling could serve as a novel means of blocking pathological vascular leak.

Keywords: leakage; endotoxemia; vascular leakage; targeting integrin; cell

Journal Title: Proceedings of the National Academy of Sciences of the United States of America
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.