LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Five-S-isotope evidence of two distinct mass-independent sulfur isotope effects and implications for the modern and Archean atmospheres

Photo by shalone86 from unsplash

Significance Anomalous sulfur isotopic compositions preserved in sedimentary rocks older than ∼2.5 billion years have been widely interpreted as the products of UV photolysis of sulfur dioxide in an anoxic… Click to show full abstract

Significance Anomalous sulfur isotopic compositions preserved in sedimentary rocks older than ∼2.5 billion years have been widely interpreted as the products of UV photolysis of sulfur dioxide in an anoxic atmosphere and used to track the history of primitive Earth and evolution of early life. In this study, we present strong observational evidence that there is an additional process that produces similar anomalous sulfur isotope signatures. This previously unknown origin not only offers a tool for quantifying the present-day atmospheric sulfur budget and evaluating its influences on climate and public health but also implies that anomalous sulfur isotopic compositions in some of the oldest rocks on Earth might have been produced in a way different from that previously thought. The signature of mass-independent fractionation of quadruple sulfur stable isotopes (S-MIF) in Archean rocks, ice cores, and Martian meteorites provides a unique probe of the oxygen and sulfur cycles in the terrestrial and Martian paleoatmospheres. Its mechanistic origin, however, contains some uncertainties. Even for the modern atmosphere, the primary mechanism responsible for the S-MIF observed in nearly all tropospheric sulfates has not been identified. Here we present high-sensitivity measurements of a fifth sulfur isotope, stratospherically produced radiosulfur, along with all four stable sulfur isotopes in the same sulfate aerosols and a suite of chemical species to define sources and mechanisms on a field observational basis. The five-sulfur-isotope and multiple chemical species analysis approach provides strong evidence that S-MIF signatures in tropospheric sulfates are concomitantly affected by two distinct processes: an altitude-dependent positive 33S anomaly, likely linked to stratospheric SO2 photolysis, and a negative 36S anomaly mainly associated with combustion. Our quadruple stable sulfur isotopic measurements in varying coal samples (formed in the Carboniferous, Permian, and Triassic periods) and in SO2 emitted from combustion display normal 33S and 36S, indicating that the observed negative 36S anomalies originate from a previously unknown S-MIF mechanism during combustion (likely recombination reactions) instead of coal itself. The basic chemical physics of S-MIF in both photolytic and thermal reactions and their interplay, which were not explored together in the past, may be another ingredient for providing deeper understanding of the evolution of Earth’s atmosphere and life’s origin.

Keywords: evidence; mass independent; sulfur; sulfur isotope; two distinct

Journal Title: Proceedings of the National Academy of Sciences of the United States of America
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.