Significance An increasing number of herbicide-resistant weeds are being reported in the United States, Argentina, and Brazil. This is becoming a global challenge for the production of several major crops,… Click to show full abstract
Significance An increasing number of herbicide-resistant weeds are being reported in the United States, Argentina, and Brazil. This is becoming a global challenge for the production of several major crops, such as cotton, maize, and soybean. New strategies for weed control are required to sustain agricultural production while reducing our dependence on herbicides. Here, we report that selective fertilization of transgenic cotton, expressing a bacterial phosphite dehydrogenase (PTXD), with phosphite provides an effective way to suppress weed growth. Importantly, we show that the ptxD-transgenic cotton plants successfully outcompete a highly aggressive glyphosate-resistant weed. The ptxD/phosphite system represents one of the most promising technologies of recent times with potential to solve many of the agricultural and environmental problems that we encounter currently. Weeds, which have been the bane of agriculture since the beginning of civilization, are managed manually, mechanically, and, more recently, by chemicals. However, chemical control options are rapidly shrinking due to the recent rise in the number of herbicide-resistant weeds in crop fields, with few alternatives on the horizon. Therefore, there is an urgent need for alternative weed suppression systems to sustain crop productivity while reducing our dependence on herbicides and tillage. Such a development will also allay some of the negative perceptions associated with the use of herbicide-resistance genes and heavy dependence on herbicides. Transgenic plants expressing the bacterial phosphite dehydrogenase (ptxD) gene gain an ability to convert phosphite (Phi) into orthophosphate [Pi, the metabolizable form of phosphorus (P)]. Such plants allow for a selective fertilization scheme, based on Phi as the sole source of P for the crop, while offering an effective alternative for suppressing weed growth. Here, we show that, when P is supplied in the form of Phi, ptxD-expressing cotton (Gossypium hirsutum L.) plants outcompete, in both artificial substrates and natural soils from agricultural fields, three different monocot and dicot weed species intentionally introduced in the experiments, as well as weeds naturally present in the tested soils. Importantly, the ptxD/Phi system proved highly efficacious in inhibiting the growth of glyphosate-resistant Palmer amaranth. With over 250 weed species resistant to currently available herbicides, ptxD-transgenic plants fertilized with Phi could provide an effective alternative to suppressing the growth of these weeds while providing adequate nutrition to the crop.
               
Click one of the above tabs to view related content.