LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Early adolescent Rai1 reactivation reverses transcriptional and social interaction deficits in a mouse model of Smith–Magenis syndrome

Photo by thinkmagically from unsplash

Significance Losing one copy of the RAI1 gene causes Smith–Magenis syndrome (SMS), a neurodevelopmental disorder. Using a newly generated SMS mouse model, this study demonstrates that restoring the Rai1 gene… Click to show full abstract

Significance Losing one copy of the RAI1 gene causes Smith–Magenis syndrome (SMS), a neurodevelopmental disorder. Using a newly generated SMS mouse model, this study demonstrates that restoring the Rai1 gene dose in an early postnatal window could repair gene expression and social interaction deficits in this SMS model. The SMS mouse model also showed a reduced density of dendritic spines, anatomical correlates of excitatory synapses, in the prefrontal cortex. Artificial activation of prefrontal cortex neurons partially alleviated the behavioral deficits. These findings suggest that, similar to Rett syndrome, SMS is caused by disruption of a chromatin-modifying gene with reversible developmental phenotypes, highlighting the potential treatment windows in childhood or adolescence. Haploinsufficiency of Retinoic Acid Induced 1 (RAI1) causes Smith–Magenis syndrome (SMS), a syndromic autism spectrum disorder associated with craniofacial abnormalities, intellectual disability, and behavioral problems. There is currently no cure for SMS. Here, we generated a genetic mouse model to determine the reversibility of SMS-like neurobehavioral phenotypes in Rai1 heterozygous mice. We show that normalizing the Rai1 level 3–4 wk after birth corrected the expression of genes related to neural developmental pathways and fully reversed a social interaction deficit caused by Rai1 haploinsufficiency. In contrast, Rai1 reactivation 7–8 wk after birth was not beneficial. We also demonstrated that the correct Rai1 dose is required in both excitatory and inhibitory neurons for proper social interactions. Finally, we found that Rai1 heterozygous mice exhibited a reduction of dendritic spines in the medial prefrontal cortex (mPFC) and that optogenetic activation of mPFC neurons in adults improved the social interaction deficit of Rai1 heterozygous mice. Together, these results suggest the existence of a postnatal temporal window during which restoring Rai1 can improve the transcriptional and social behavioral deficits in a mouse model of SMS. It is possible that circuit-level interventions would be beneficial beyond this critical window.

Keywords: model; social interaction; mouse model; smith magenis; rai1

Journal Title: Proceedings of the National Academy of Sciences of the United States of America
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.