LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evolution of drug resistance in an antifungal-naive chronic Candida lusitaniae infection

Photo from wikipedia

Significance Drug-resistant subpopulations of microbes or tumor cells are difficult to detect but can confound disease treatment. In this deep characterization of a chronic fungal infection, we report unprecedented heterogeneity… Click to show full abstract

Significance Drug-resistant subpopulations of microbes or tumor cells are difficult to detect but can confound disease treatment. In this deep characterization of a chronic fungal infection, we report unprecedented heterogeneity in the drug resistance-related gene MRR1 among Clavispora (Candida) lusitaniae isolates from a single individual. Cells expressing Mrr1 variants that led to drug resistance, by elevated expression of the MDR1-encoded efflux protein, were present at low levels in each sample and thus were undetected in standard assays. We provide evidence that these drug-resistant fungi may arise indirectly in response to other factors present in the infection. Our work suggests that alternative methods may be able to identify drug-resistant subpopulations and thus positively impact patient care. Management of the limited number of antimicrobials currently available requires the identification of infections that contain drug-resistant isolates and the discovery of factors that promote the evolution of drug resistance. Here, we report a single fungal infection in which we have identified numerous subpopulations that differ in their alleles of a single gene that impacts drug resistance. The diversity at this locus was markedly greater than the reported heterogeneity of alleles conferring antibiotic resistance in bacterial infections. Analysis of genomes from hundreds of Clavispora (Candida) lusitaniae isolates, through individual and pooled isolate sequencing, from a single individual with cystic fibrosis revealed at least 25 nonsynonymous mutations in MRR1, which encodes a transcription factor capable of inducing fluconazole (FLZ) resistance in Candida species. Isolates with high-activity Mrr1 variants were resistant to FLZ due to elevated expression of the MDR1-encoded efflux pump. We found that high Mrr1-regulated Mdr1 activity protected against host and bacterial factors, suggesting drug resistance can be selected for indirectly and perhaps explaining the Mrr1 heterogeneity in this individual who had no prior azole exposure. Regional analysis of C. lusitaniae populations from the upper and lower lobes of the right lung suggested intermingling of subpopulations throughout. Our retrospective characterization of sputum and lung populations by pooled sequencing found that alleles that confer FLZ resistance were a minority in each pool, possibly explaining why they were undetected before unsuccessful FLZ therapy. New susceptibility testing regimes may detect problematical drug-resistant subpopulations in heterogeneous single-species infections.

Keywords: drug resistance; infection; drug; drug resistant; resistance; candida lusitaniae

Journal Title: Proceedings of the National Academy of Sciences of the United States of America
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.