Significance Dust-borne iron fertilization of Southern Ocean phytoplankton contributes to lower glacial atmospheric CO2. Previous studies evaluating the impact of dust on climate estimate bioavailable iron using total iron fluxes… Click to show full abstract
Significance Dust-borne iron fertilization of Southern Ocean phytoplankton contributes to lower glacial atmospheric CO2. Previous studies evaluating the impact of dust on climate estimate bioavailable iron using total iron fluxes in sediment cores. Thus, all iron is considered equally bioavailable over geologic time, despite evidence that glaciers mobilize highly bioavailable iron from bedrock, which winds can deliver to the Southern Ocean. Here we reconstruct dust-borne iron speciation over the last glacial cycle, showing that highly bioavailable iron(II) silicate minerals are a greater fraction of total iron reaching the Southern Ocean during glacial periods. The abundance of iron(II) silicates likely controls the bioavailable iron supply to the Southern Ocean and contributes to the previously observed increase in glacial productivity and CO2 drawdown. Changes in bioavailable dust-borne iron (Fe) supply to the iron-limited Southern Ocean may influence climate by modulating phytoplankton growth and CO2 fixation into organic matter that is exported to the deep ocean. The chemical form (speciation) of Fe impacts its bioavailability, and glacial weathering produces highly labile and bioavailable Fe minerals in modern dust sources. However, the speciation of dust-borne Fe reaching the iron-limited Southern Ocean on glacial−interglacial timescales is unknown, and its impact on the bioavailable iron supply over geologic time has not been quantified. Here we use X-ray absorption spectroscopy on subantarctic South Atlantic and South Pacific marine sediments to reconstruct dust-borne Fe speciation over the last glacial cycle, and determine the impact of glacial activity and glaciogenic dust sources on bioavailable Fe supply. We show that the Fe(II) content, as a percentage of total dust-borne Fe, increases from ∼5 to 10% in interglacial periods to ∼25 to 45% in glacial periods. Consequently, the highly bioavailable Fe(II) flux increases by a factor of ∼15 to 20 in glacial periods compared with the current interglacial, whereas the total Fe flux increases only by a factor of ∼3 to 5. The change in Fe speciation is dominated by primary Fe(II) silicates characteristic of glaciogenic dust. Our results suggest that glacial physical weathering increases the proportion of highly bioavailable Fe(II) in dust that reaches the subantarctic Southern Ocean in glacial periods, which represents a positive feedback between glacial activity and cold glacial temperatures.
               
Click one of the above tabs to view related content.