LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultrahigh-throughput functional profiling of microbiota communities

Photo from wikipedia

Significance Analyzing complex microbial communities is the milestone of modern microbiology, calling for “deep functional profiling” techniques. While next generation sequencing revolutionized our understanding of microbiota communities, we still lack… Click to show full abstract

Significance Analyzing complex microbial communities is the milestone of modern microbiology, calling for “deep functional profiling” techniques. While next generation sequencing revolutionized our understanding of microbiota communities, we still lack high-throughput technologies to precisely determine their functionality. Here we show how cultivation of individual bacteria inside droplets of microfluidic double water-in-oil-in-water emulsion enables us to isolate the clones with a desired activity. This approach allows us not only to select the potent antibiotic producer but also to discover a distinct mechanism of self-resistance as well as assess its efficiency on entire microbiomes. The outcome of this methodology shows that it could be effectively transferred to numerous applications in microbiology and biotechnology. Microbiome spectra serve as critical clues to elucidate the evolutionary biology pathways, potential pathologies, and even behavioral patterns of the host organisms. Furthermore, exotic sources of microbiota represent an unexplored niche to discover microbial secondary metabolites. However, establishing the bacterial functionality is complicated by an intricate web of interactions inside the microbiome. Here we apply an ultrahigh-throughput (uHT) microfluidic droplet platform for activity profiling of the entire oral microbial community of the Siberian bear to isolate Bacillus strains demonstrating antimicrobial activity against Staphylococcus aureus. Genome mining allowed us to identify antibiotic amicoumacin A (Ami) as responsible for inhibiting the growth of S. aureus. Proteomics and metabolomics revealed a unique mechanism of Bacillus self-resistance to Ami, based on a subtle equilibrium of its deactivation and activation by kinase AmiN and phosphatase AmiO, respectively. We developed uHT quantitative single-cell analysis to estimate antibiotic efficacy toward different microbiomes and used it to determine the activity spectra of Ami toward human and Siberian bear microbiota. Thus, uHT microfluidic droplet platform activity profiling is a powerful tool for discovering antibiotics and quantifying external influences on a microbiome.

Keywords: microbiota; functional profiling; microbiota communities; microbiology; ultrahigh throughput; activity

Journal Title: Proceedings of the National Academy of Sciences of the United States of America
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.