LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Region-specific and activity-dependent regulation of SVZ neurogenesis and recovery after stroke

Photo from wikipedia

Significance Recovery after stroke involves remodeling in brain tissue adjacent to the stroke site. In this remodeling, neurogenesis after stroke involves the formation of new neurons. The role of neurogenesis… Click to show full abstract

Significance Recovery after stroke involves remodeling in brain tissue adjacent to the stroke site. In this remodeling, neurogenesis after stroke involves the formation of new neurons. The role of neurogenesis in stroke recovery and the role of brain and behavioral activity in this process remain undefined. Using orthogonal transgenic mouse tracing and rabies virus approaches, we demonstrate that brain regions unexpectedly compete for new neurons after stroke and that the behavioral or cellular activity establishes this competition. These new neurons synaptically integrate into cortex, and this integration is necessary for poststroke recovery. Stroke is the leading cause of adult disability. Neurogenesis after stroke is associated with repair; however, the mechanisms regulating poststroke neurogenesis and its functional effect remain unclear. Here, we investigate multiple mechanistic routes of induced neurogenesis in the poststroke brain, using both a forelimb overuse manipulation that models a clinical neurorehabilitation paradigm, as well as local manipulation of cellular activity in the peri-infarct cortex. Increased activity in the forelimb peri-infarct cortex via either modulation drives increased subventricular zone (SVZ) progenitor proliferation, migration, and neuronal maturation in peri-infarct cortex. This effect is sensitive to competition from neighboring brain regions. By using orthogonal tract tracing and rabies virus approaches in transgenic SVZ-lineage-tracing mice, SVZ-derived neurons synaptically integrate into the peri-infarct cortex; these effects are enhanced with forelimb overuse. Synaptic transmission from these newborn SVZ-derived neurons is critical for spontaneous recovery after stroke, as tetanus neurotoxin silencing specifically of the SVZ-derived neurons disrupts the formation of these synaptic connections and hinders functional recovery after stroke. SVZ-derived neurogenesis after stroke is activity-dependent, region-specific, and sensitive to modulation, and the synaptic connections formed by these newborn cells are functionally critical for poststroke recovery.

Keywords: recovery; neurogenesis; svz; recovery stroke; brain; activity

Journal Title: Proceedings of the National Academy of Sciences of the United States of America
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.