LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Activation of GCN2 by the ribosomal P-stalk

Photo by aaronburden from unsplash

Significance General control nonderepressible 2 (GCN2) phosphorylates eIF2α, regulating translation in response to nutritional stress. Here, we show that although tRNA stimulates purified, recombinant human GCN2 in vitro, mammalian ribosomes… Click to show full abstract

Significance General control nonderepressible 2 (GCN2) phosphorylates eIF2α, regulating translation in response to nutritional stress. Here, we show that although tRNA stimulates purified, recombinant human GCN2 in vitro, mammalian ribosomes are even more potent GCN2 activators. Hydrogen/deuterium exchange–mass spectrometry (HDX-MS) showed GCN2 interacting with domain II of the uL10 P-stalk protein. The P-stalk is a uL10/P12/P22 pentameric complex that is part of the ribosomal GTPase-associated center. Recombinant human P-stalk greatly stimulates GCN2. Both domain II of uL10 and the C-terminal tails of P1 and P2 are necessary for maximal GCN2 activation. On actively translating ribosomes, the C-terminal tails of P1 and P2 are sequestered by elongation factors, suggesting P-stalk availability could link translational stress to GCN2 activation. Cells dynamically adjust their protein translation profile to maintain homeostasis in changing environments. During nutrient stress, the kinase general control nonderepressible 2 (GCN2) phosphorylates translation initiation factor eIF2α, initiating the integrated stress response (ISR). To examine the mechanism of GCN2 activation, we have reconstituted this process in vitro, using purified components. We find that recombinant human GCN2 is potently stimulated by ribosomes and, to a lesser extent, by tRNA. Hydrogen/deuterium exchange–mass spectrometry (HDX-MS) mapped GCN2–ribosome interactions to domain II of the uL10 subunit of the ribosomal P-stalk. Using recombinant, purified P-stalk, we showed that this domain of uL10 is the principal component of binding to GCN2; however, the conserved 14-residue C-terminal tails (CTTs) in the P1 and P2 P-stalk proteins are also essential for GCN2 activation. The HisRS-like and kinase domains of GCN2 show conformational changes upon binding recombinant P-stalk complex. Given that the ribosomal P-stalk stimulates the GTPase activity of elongation factors during translation, we propose that the P-stalk could link GCN2 activation to translational stress, leading to initiation of ISR.

Keywords: ribosomal stalk; gcn2; gcn2 activation; stalk; stress

Journal Title: Proceedings of the National Academy of Sciences of the United States of America
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.