Significance Growth typically involves differentiation of cells from progenitors into more specialized descendants, often involving lineages of pure and transitional cells to achieve final form. Recent technology has enabled estimation… Click to show full abstract
Significance Growth typically involves differentiation of cells from progenitors into more specialized descendants, often involving lineages of pure and transitional cells to achieve final form. Recent technology has enabled estimation of gene expression profiles of single cells and these profiles theoretically differentiate pure cell types. What is missing from the analytical toolbox is an efficient technique to classify pure and transitional cells from their profiles. Here we propose semisoft clustering with pure cells (SOUP). This algorithm performs well in the hard-clustering problem for pure cell types and excels at identifying transitional cells with soft memberships. Moreover, SOUP provides an estimate of the developmental trajectories based on the estimated cell type membership that naturally adapts to cells in transition. Motivated by the dynamics of development, in which cells of recognizable types, or pure cell types, transition into other types over time, we propose a method of semisoft clustering that can classify both pure and intermediate cell types from data on gene expression from individual cells. Called semisoft clustering with pure cells (SOUP), this algorithm reveals the clustering structure for both pure cells and transitional cells with soft memberships. SOUP involves a two-step process: Identify the set of pure cells and then estimate a membership matrix. To find pure cells, SOUP uses the special block structure in the expression similarity matrix. Once pure cells are identified, they provide the key information from which the membership matrix can be computed. By modeling cells as a continuous mixture of K discrete types we obtain more parsimonious results than obtained with standard clustering algorithms. Moreover, using soft membership estimates of cell type cluster centers leads to better estimates of developmental trajectories. The strong performance of SOUP is documented via simulation studies, which show its robustness to violations of modeling assumptions. The advantages of SOUP are illustrated by analyses of two independent datasets of gene expression from a large number of cells from fetal brain.
               
Click one of the above tabs to view related content.