LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

NADPH-dependent extracellular superoxide production is vital to photophysiology in the marine diatom Thalassiosira oceanica

Significance Superoxide and other reactive oxygen species (ROS) are commonly regarded as harmful progenitors of biological stress and death, but this view has been changing. Indeed, many phytoplankton actively generate… Click to show full abstract

Significance Superoxide and other reactive oxygen species (ROS) are commonly regarded as harmful progenitors of biological stress and death, but this view has been changing. Indeed, many phytoplankton actively generate extracellular superoxide under ideal growth conditions for reasons that are mysterious. Results from this study suggest that extracellular superoxide production by the marine diatom Thalassiosira oceanica may promote photosynthetic health by modulating the oxidation state of the cellular NADP+/NADPH pool. The key enzyme implicated in this process is present in other representative marine phytoplankton and global ocean metagenomes. Overall, these findings transform the perceived role of superoxide in the health and functioning of phytoplankton and present implications for redox balance, biogeochemistry, and ecology in the future ocean. Reactive oxygen species (ROS) like superoxide drive rapid transformations of carbon and metals in aquatic systems and play dynamic roles in biological health, signaling, and defense across a diversity of cell types. In phytoplankton, however, the ecophysiological role(s) of extracellular superoxide production has remained elusive. Here, the mechanism and function of extracellular superoxide production by the marine diatom Thalassiosira oceanica are described. Extracellular superoxide production in T. oceanica exudates was coupled to the oxidation of NADPH. A putative NADPH-oxidizing flavoenzyme with predicted transmembrane domains and high sequence similarity to glutathione reductase (GR) was implicated in this process. GR was also linked to extracellular superoxide production by whole cells via quenching by the flavoenzyme inhibitor diphenylene iodonium (DPI) and oxidized glutathione, the preferred electron acceptor of GR. Extracellular superoxide production followed a typical photosynthesis-irradiance curve and increased by 30% above the saturation irradiance of photosynthesis, while DPI significantly impaired the efficiency of photosystem II under a wide range of light levels. Together, these results suggest that extracellular superoxide production is a byproduct of a transplasma membrane electron transport system that serves to balance the cellular redox state through the recycling of photosynthetic NADPH. This photoprotective function may be widespread, consistent with the presence of putative homologs to T. oceanica GR in other representative marine phytoplankton and ocean metagenomes. Given predicted climate-driven shifts in global surface ocean light regimes and phytoplankton community-level photoacclimation, these results provide implications for future ocean redox balance, ecological functioning, and coupled biogeochemical transformations of carbon and metals.

Keywords: marine; oceanica; extracellular superoxide; superoxide production

Journal Title: Proceedings of the National Academy of Sciences of the United States of America
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.