Significance PD-1 blockade is a cancer immunotherapy effective in various types of cancer. However, we observed rapid cancer progression, called hyperprogressive disease (HPD), in ∼10% of advanced gastric cancer patients… Click to show full abstract
Significance PD-1 blockade is a cancer immunotherapy effective in various types of cancer. However, we observed rapid cancer progression, called hyperprogressive disease (HPD), in ∼10% of advanced gastric cancer patients treated with anti–PD-1 monoclonal antibody. Tumors of HPD patients possessed highly proliferating FoxP3+ Treg cells after treatment, contrasting with their reduction in non-HPD tumors. In vitro PD-1 blockade augmented proliferation and suppressive activity of human Treg cells. Likewise, murine Treg cells that were deficient in PD-1 signaling were more proliferative and immunosuppressive. Thus, HPD may occur when PD-1 blockade activates and expands tumor-infiltrating PD-1+ Treg cells to overwhelm tumor-reactive PD-1+ effector T cells. Depletion of the former may therefore help treat and prevent HPD. PD-1 blockade is a cancer immunotherapy effective in various types of cancer. In a fraction of treated patients, however, it causes rapid cancer progression called hyperprogressive disease (HPD). With our observation of HPD in ∼10% of anti–PD-1 monoclonal antibody (mAb)-treated advanced gastric cancer (GC) patients, we explored how anti–PD-1 mAb caused HPD in these patients and how HPD could be treated and prevented. In the majority of GC patients, tumor-infiltrating FoxP3highCD45RA−CD4+ T cells [effector Treg (eTreg) cells], which were abundant and highly suppressive in tumors, expressed PD-1 at equivalent levels as tumor-infiltrating CD4+ or CD8+ effector/memory T cells and at much higher levels than circulating eTreg cells. Comparison of GC tissue samples before and after anti–PD-1 mAb therapy revealed that the treatment markedly increased tumor-infiltrating proliferative (Ki67+) eTreg cells in HPD patients, contrasting with their reduction in non-HPD patients. Functionally, circulating and tumor-infiltrating PD-1+ eTreg cells were highly activated, showing higher expression of CTLA-4 than PD-1− eTreg cells. PD-1 blockade significantly enhanced in vitro Treg cell suppressive activity. Similarly, in mice, genetic ablation or antibody-mediated blockade of PD-1 in Treg cells increased their proliferation and suppression of antitumor immune responses. Taken together, PD-1 blockade may facilitate the proliferation of highly suppressive PD-1+ eTreg cells in HPDs, resulting in inhibition of antitumor immunity. The presence of actively proliferating PD-1+ eTreg cells in tumors is therefore a reliable marker for HPD. Depletion of eTreg cells in tumor tissues would be effective in treating and preventing HPD in PD-1 blockade cancer immunotherapy.
               
Click one of the above tabs to view related content.