Significance Glioblastoma (GB) is the most lethal brain malignancy without an effective treatment. In this study, we demonstrate that tumor-induced change in chaperone-mediated autophagy (CMA) in host perivascular cells is… Click to show full abstract
Significance Glioblastoma (GB) is the most lethal brain malignancy without an effective treatment. In this study, we demonstrate that tumor-induced change in chaperone-mediated autophagy (CMA) in host perivascular cells is a targetable process to prevent GB progression. CMA regulates pericyte interaction with tumor cells and sustains the acquired immunosuppressive function of pericytes, which is required for tumor survival. Blockage of CMA results in changes in the protein levels involved in cell-to-cell interaction and affects the pericyte secretory phenotype, resulting in defective GB adhesion and diminished tumor survival. This work reveals a previously unknown capacity of GB to modulate host pericyte CMA to assist in its own progression. Our results highlight the possibility of targeting CMA to treat this aggressive disease. The contractile perivascular cells, pericytes (PC), are hijacked by glioblastoma (GB) to facilitate tumor progression. PC’s protumorigenic function requires direct interaction with tumor cells and contributes to the establishment of immunotolerance to tumor growth. Cancer cells up-regulate their own chaperone-mediated autophagy (CMA), a process that delivers selective cytosolic proteins to lysosomes for degradation, with pro-oncogenic effects. However, the possible impact that cancer cells may have on CMA of surrounding host cells has not been explored. We analyzed the contribution of CMA to the GB-induced changes in PC biology. We have found that CMA is markedly up-regulated in PC in response to the oxidative burst that follows PC–GB cell interaction. Genetic manipulations to block the GB-induced up-regulation of CMA in PC allows them to maintain their proinflammatory function and to support the induction of effective antitumor T cell responses required for GB clearance. GB-induced up-regulation of CMA activity in PC is essential for their effective interaction with GB cells that help tumor growth. We show that CMA inhibition in PC promotes GB cell death and the release of high immunogenic levels of granulocyte-macrophage colony stimulating factor (GM-CSF), through deregulation of the expression of cell-to-cell interaction proteins and protein secretion. A GB mouse model grafted in vivo with CMA-defective PC shows reduced GB proliferation and effective immune response compared to mice grafted with control PC. Our findings identify abnormal up-regulation of CMA as a mechanism by which GB cells elicit the immunosuppressive function of PC and stabilize GB–PC interactions necessary for tumor cell survival.
               
Click one of the above tabs to view related content.