LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Selection of endurance capabilities and the trade-off between pressure and volume in the evolution of the human heart

Photo from wikipedia

Significance Unlike other great apes, humans evolved multisystem capabilities for moderate-intensity EPA, but it is unknown if selection acted similarly on the heart. We present data from a sample of… Click to show full abstract

Significance Unlike other great apes, humans evolved multisystem capabilities for moderate-intensity EPA, but it is unknown if selection acted similarly on the heart. We present data from a sample of humans, chimpanzees, and gorillas showing that the human (LV) evolved numerous features that help to augment stroke volume (SV), enabling moderate-intensity EPA. We also show that phenotypic plasticity of the human LV trades off pressure adaptations for volume capabilities, becoming more similar to a chimpanzee-like heart in response to physical inactivity or chronic pressure loading. Consequently, the derived human heart appears partly dependent upon moderate EPA and its absence, in combination with a highly processed diet, likely contributes to the modern epidemic of hypertensive heart disease. Chimpanzees and gorillas, when not inactive, engage primarily in short bursts of resistance physical activity (RPA), such as climbing and fighting, that creates pressure stress on the cardiovascular system. In contrast, to initially hunt and gather and later to farm, it is thought that preindustrial human survival was dependent on lifelong moderate-intensity endurance physical activity (EPA), which creates a cardiovascular volume stress. Although derived musculoskeletal and thermoregulatory adaptations for EPA in humans have been documented, it is unknown if selection acted similarly on the heart. To test this hypothesis, we compared left ventricular (LV) structure and function across semiwild sanctuary chimpanzees, gorillas, and a sample of humans exposed to markedly different physical activity patterns. We show the human LV possesses derived features that help augment cardiac output (CO) thereby enabling EPA. However, the human LV also demonstrates phenotypic plasticity and, hence, variability, across a wide range of habitual physical activity. We show that the human LV’s propensity to remodel differentially in response to chronic pressure or volume stimuli associated with intense RPA and EPA as well as physical inactivity represents an evolutionary trade-off with potential implications for contemporary cardiovascular health. Specifically, the human LV trades off pressure adaptations for volume capabilities and converges on a chimpanzee-like phenotype in response to physical inactivity or sustained pressure loading. Consequently, the derived LV and lifelong low blood pressure (BP) appear to be partly sustained by regular moderate-intensity EPA whose decline in postindustrial societies likely contributes to the modern epidemic of hypertensive heart disease.

Keywords: human heart; heart; volume; selection; moderate intensity; pressure

Journal Title: Proceedings of the National Academy of Sciences of the United States of America
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.