LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rickettsia conorii O antigen is the target of bactericidal Weil–Felix antibodies

Photo by kwook from unsplash

Significance Genetic analysis of Rickettsia has been difficult. We developed a transposon and selection scheme to facilitate the isolation of Rickettsia conorii mutants with insertional lesions. Here, we demonstrate that… Click to show full abstract

Significance Genetic analysis of Rickettsia has been difficult. We developed a transposon and selection scheme to facilitate the isolation of Rickettsia conorii mutants with insertional lesions. Here, we demonstrate that the R. conorii polysaccharide synthesis operon (pso) encompasses genetic determinants for biosynthesis of the O antigen, which also affect the composition of outer-membrane proteins, invasion of host cells, and pathogenesis. The O antigen provides essential barrier functions and plays a major role in host–pathogen interactions. Our findings suggest that infected hosts develop protective immunity against R. conorii via the production of antibodies targeting the O antigen. Conservation of pso among rickettsial species suggests that it may play a universal role in O-antigen synthesis, disease pathogenesis, and the development of immunity. Rickettsial diseases have long been diagnosed with serum antibodies cross-reactive against Proteus vulgaris (Weil–Felix reaction). Although Weil–Felix antibodies are associated with the development of immunity, their rickettsial target and contribution to disease pathogenesis are not established. Here, we developed a transposon for insertional mutagenesis of Rickettsia conorii, isolating variants defective for replication in cultured cells and in spotted fever pathogenesis. Mutations in the polysaccharide synthesis operon (pso) abolish lipopolysaccharide O-antigen synthesis and Weil–Felix serology and alter outer-membrane protein assembly. Unlike wild-type R. conorii, pso mutants cannot elicit bactericidal antibodies that bind O antigen. The pso operon is conserved among rickettsial pathogens, suggesting that bactericidal antibodies targeting O antigen may generate universal immunity that could be exploited to develop vaccines against rickettsial diseases.

Keywords: rickettsia conorii; pso; antigen; weil felix; felix antibodies

Journal Title: Proceedings of the National Academy of Sciences of the United States of America
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.