Significance The human population contains thousands of MHC-I alleles, showing a range of dependencies on molecular chaperones for loading of their peptide cargo, which are then displayed on the cell… Click to show full abstract
Significance The human population contains thousands of MHC-I alleles, showing a range of dependencies on molecular chaperones for loading of their peptide cargo, which are then displayed on the cell surface for T cell surveillance. Using the chaperone TAPBPR as a model, we combine deep mutagenesis with functional and biophysical data, especially solution NMR, to provide a complete view of the molecular determinants of chaperone recognition. Our data provide significant evidence that localized protein motions define the intrinsic ability of MHC-I molecules to interact with chaperones. The importance of MHC-I dynamics unifies our findings, with broad recognition of conformationally unstable, nascent MHC-I molecules becoming restricted to a smaller set of MHC-I alleles that retain relevant dynamic motions in their folded state. The interplay between a highly polymorphic set of MHC-I alleles and molecular chaperones shapes the repertoire of peptide antigens displayed on the cell surface for T cell surveillance. Here, we demonstrate that the molecular chaperone TAP-binding protein related (TAPBPR) associates with a broad range of partially folded MHC-I species inside the cell. Bimolecular fluorescence complementation and deep mutational scanning reveal that TAPBPR recognition is polarized toward the α2 domain of the peptide-binding groove, and depends on the formation of a conserved MHC-I disulfide epitope in the α2 domain. Conversely, thermodynamic measurements of TAPBPR binding for a representative set of properly conformed, peptide-loaded molecules suggest a narrower MHC-I specificity range. Using solution NMR, we find that the extent of dynamics at “hotspot” surfaces confers TAPBPR recognition of a sparsely populated MHC-I state attained through a global conformational change. Consistently, restriction of MHC-I groove plasticity through the introduction of a disulfide bond between the α1/α2 helices abrogates TAPBPR binding, both in solution and on a cellular membrane, while intracellular binding is tolerant of many destabilizing MHC-I substitutions. Our data support parallel TAPBPR functions of 1) chaperoning unstable MHC-I molecules with broad allele-specificity at early stages of their folding process, and 2) editing the peptide cargo of properly conformed MHC-I molecules en route to the surface, which demonstrates a narrower specificity. Our results suggest that TAPBPR exploits localized structural adaptations, both near and distant to the peptide-binding groove, to selectively recognize discrete conformational states sampled by MHC-I alleles, toward editing the repertoire of displayed antigens.
               
Click one of the above tabs to view related content.