LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Defining how multiple lipid species interact with inward rectifier potassium (Kir2) channels

Photo from wikipedia

Significance Ion channels form pores that allow for the selective transport of ions across cell membranes, generating electrical signals in response to a variety of signals. Inward rectifier potassium (Kir)… Click to show full abstract

Significance Ion channels form pores that allow for the selective transport of ions across cell membranes, generating electrical signals in response to a variety of signals. Inward rectifier potassium (Kir) channels in particular are regulated by direct interactions with the complex mixture of lipids that are present in eukaryotic cell membranes. However, the molecular details of these concurrent lipid interactions with Kir channels are not clear and difficult to access via experimental methods. Here, we simulate the Kir2.2 channel in a complex lipid mixture to explore how anionic phospholipids and cholesterol dynamically organize around the membrane protein. In particular we demonstrate a synergy between binding interactions of different anionic phospholipid species which are known to activate Kir channels. Protein–lipid interactions are a key element of the function of many integral membrane proteins. These potential interactions should be considered alongside the complexity and diversity of membrane lipid composition. Inward rectifier potassium channel (Kir) Kir2.2 has multiple interactions with plasma membrane lipids: Phosphatidylinositol (4, 5)-bisphosphate (PIP2) activates the channel; a secondary anionic lipid site has been identified, which augments the activation by PIP2; and cholesterol inhibits the channel. Molecular dynamics simulations are used to characterize in molecular detail the protein–lipid interactions of Kir2.2 in a model of the complex plasma membrane. Kir2.2 has been simulated with multiple, functionally important lipid species. From our simulations we show that PIP2 interacts most tightly at the crystallographic interaction sites, outcompeting other lipid species at this site. Phosphatidylserine (PS) interacts at the previously identified secondary anionic lipid interaction site, in a PIP2 concentration-dependent manner. There is interplay between these anionic lipids: PS interactions are diminished when PIP2 is not present in the membrane, underlining the need to consider multiple lipid species when investigating protein–lipid interactions.

Keywords: kir2; rectifier potassium; lipid species; membrane; inward rectifier

Journal Title: Proceedings of the National Academy of Sciences of the United States of America
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.