Significance Two unresolved problems in Alzheimer’s disease (AD) are its onset and propagation, linked to Aβ peptide aggregation. Fibrils of Aβ42 may grow by monomer addition at their ends. Additionally,… Click to show full abstract
Significance Two unresolved problems in Alzheimer’s disease (AD) are its onset and propagation, linked to Aβ peptide aggregation. Fibrils of Aβ42 may grow by monomer addition at their ends. Additionally, through so-called secondary nucleation, fibrils can catalyse the formation of new aggregates from monomer on their surface, thereby generating oligomeric species that are toxic to brain tissue. Insights into the structural transitions occurring during secondary nucleation will facilitate the design of therapies to limit the neurotoxicity in AD, but such information is currently lacking. This study identifies conditions that allow the capture of reaction intermediates of secondary nucleation for the purpose of ultrastructural characterization. These reaction intermediates are morphologically distinct from mature fibrils and cover the sides of fibrils during an on-going aggregation reaction. The nucleation of Alzheimer-associated Aβ peptide monomers can be catalyzed by preexisting Aβ fibrils. This leads to autocatalytic amplification of aggregate mass and underlies self-replication and generation of toxic oligomers associated with several neurodegenerative diseases. However, the nature of the interactions between the monomeric species and the fibrils during this key process, and indeed the ultrastructural localization of the interaction sites have remained elusive. Here we used NMR and optical spectroscopy to identify conditions that enable the capture of transient species during the aggregation and secondary nucleation of the Aβ42 peptide. Cryo-electron microscopy (cryo-EM) images show that new aggregates protrude from the entire length of the progenitor fibril. These protrusions are morphologically distinct from the well-ordered fibrils dominating at the end of the aggregation process. The data provide direct evidence that self-replication through secondary nucleation occurs along the sides of fibrils, which become heavily decorated under the current solution conditions (14 µM Aβ42, 20 mM sodium phosphate, 200 µM EDTA, pH 6.8).
               
Click one of the above tabs to view related content.