LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A CRAF/glutathione-S-transferase P1 complex sustains autocrine growth of cancers with KRAS and BRAF mutations

Photo by austindistel from unsplash

Significance A strategy to overcome therapeutic obstacles of mKRAS and mBRAF cancers is devised based on the finding, here, that the RAF/MEK/ERK cascade is by-passed by an autocrine signal loop… Click to show full abstract

Significance A strategy to overcome therapeutic obstacles of mKRAS and mBRAF cancers is devised based on the finding, here, that the RAF/MEK/ERK cascade is by-passed by an autocrine signal loop established by interaction of CRAF with GSTP1. The interaction evokes stabilization of CRAF from proteosomal degradation and facilitation of RAF-dimer formation. Thus, blocking CRAF/GSTP1 interactions should generate additive antiproliferative effects. The Ras/RAF/MEK/ERK pathway is an essential signaling cascade for various refractory cancers, such as those with mutant KRAS (mKRAS) and BRAF (mBRAF). However, there are unsolved ambiguities underlying mechanisms for this growth signaling thereby creating therapeutic complications. This study shows that a vital component of the pathway CRAF is directly impacted by an end product of the cascade, glutathione transferases (GST) P1 (GSTP1), driving a previously unrecognized autocrine cycle that sustains proliferation of mKRAS and mBRAF cancer cells, independent of oncogenic stimuli. The CRAF interaction with GSTP1 occurs at its N-terminal regulatory domain, CR1 motif, resulting in its stabilization, enhanced dimerization, and augmented catalytic activity. Consistent with the autocrine cycle scheme, silencing GSTP1 brought about significant suppression of proliferation of mKRAS and mBRAF cells in vitro and suppressed tumorigenesis of the xenografted mKRAS tumor in vivo. GSTP1 knockout mice showed significantly impaired carcinogenesis of mKRAS colon cancer. Consequently, hindering the autocrine loop by targeting CRAF/GSTP1 interactions should provide innovative therapeutic modalities for these cancers.

Keywords: craf; mkras mbraf; gstp1; craf glutathione; growth; craf gstp1

Journal Title: Proceedings of the National Academy of Sciences of the United States of America
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.