LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exploring the property space of periodic cellular structures based on crystal networks

Photo from wikipedia

Significance Finding genuine novelty in cellular structures is inherently difficult due to the numerous possible topological and geometrical configurations and their complex mechanical and physical interrelations. Here, we draw inspiration… Click to show full abstract

Significance Finding genuine novelty in cellular structures is inherently difficult due to the numerous possible topological and geometrical configurations and their complex mechanical and physical interrelations. Here, we draw inspiration from the incredibly rich collection of crystallographic periodic networks that we interpret from a structural point of view to identify and design novel cellular structures with unique properties. We provide a ready-to-use catalog with more than 17,000 unique entries and show how crystallographic symmetries relate to their mechanical properties. Our work provides a foundation to support future applications in science and engineering, ranging from mechanical and optical metamaterials, over bone tissue engineering, to the design of electrochemical devices. The properties of periodic cellular structures strongly depend on the regular spatial arrangement of their constituent base materials and can be controlled by changing the topology and geometry of the repeating unit cell. Recent advances in three-dimensional (3D) fabrication technologies more and more expand the limits of fabricable real-world architected materials and strengthen the need of novel microstructural topologies for applications across all length scales and fields in both fundamental science and engineering practice. Here, we systematically explore, interpret, and analyze publicly available crystallographic network topologies from a structural point of view and provide a ready-to-use unit cell catalog with more than 17,000 unique entries in total. We show that molecular crystal networks with atoms connected by chemical bonds can be interpreted as cellular structures with nodes connected by mechanical bars. By this, we identify new structures with extremal properties as well as known structures such as the octet-truss or the Kelvin cell and show how crystallographic symmetries are related to the mechanical properties of the structures. Our work provides inspiration for the discovery of novel cellular structures and paves the way for computational methods to explore and design microstructures with unprecedented properties, bridging the gap between microscopic crystal chemistry and macroscopic structural engineering.

Keywords: engineering; property space; exploring property; periodic cellular; crystal networks; cellular structures

Journal Title: Proceedings of the National Academy of Sciences of the United States of America
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.