LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dry soils can intensify mesoscale convective systems

Photo from wikipedia

Significance Soil moisture plays a key role in the climate system by affecting rainfall and drought over land. Through its impact on temperature, humidity, and wind in the lower atmosphere,… Click to show full abstract

Significance Soil moisture plays a key role in the climate system by affecting rainfall and drought over land. Through its impact on temperature, humidity, and wind in the lower atmosphere, it can influence where thunderstorms initiate. However, in many regions of the world, traveling storm clusters known as mesoscale convective systems (MCSs) are the dominant source of rainfall, and very little is known about their response to surface conditions once triggered. We use satellite observations to demonstrate that dry soils at scales ≥200 km frequently create atmospheric conditions that intensify mature MCSs in the Sahel, long after their initiation. This surface-driven predictability of hazardous weather has potentially important applications, particularly in Africa, where the population is increasingly exposed to flood risk. Soil moisture can feed back on rainfall through the impact of surface fluxes on the environment in which convection develops. The vast majority of previous research has focused on the initiation of convection, but in many regions of the world, the majority of rain comes from remotely triggered mesoscale convective systems (MCSs). Here we conduct a systematic observational analysis of soil moisture feedbacks on propagating MCSs anywhere in the world and show a strong positive impact of drier soils on convection within mature MCSs. From thousands of storms captured in satellite imagery over the Sahel, we find that convective cores within MCSs are favored on the downstream side of dry patches ≥200 km across. The effect is particularly strong during the afternoon–evening transition when convection reaches its diurnal peak in intensity and frequency, with dry soils accounting for an additional one in five convective cores. Dry soil patterns intensify MCSs through a combination of convergence, increased instability, and wind shear, all factors that strengthen organized convection. These favorable conditions tend to occur in the vicinity of a surface-induced anomalous displacement of the Sahelian dry line/intertropical discontinuity, suggesting a strong link between dry line dynamics and soil moisture state. Our results have important implications for nowcasting of severe weather in the Sahel and potentially in other MCS hotspot regions of the world.

Keywords: convection; mesoscale convective; dry soils; convective systems; soil moisture

Journal Title: Proceedings of the National Academy of Sciences of the United States of America
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.