LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Low doses of the neonicotinoid insecticide imidacloprid induce ROS triggering neurological and metabolic impairments in Drosophila

Photo from wikipedia

Significance Intense insecticide usage is suggested to be a significant contributor to the observed decline of insect populations around the world. Beneficial insects play essential roles in food production and… Click to show full abstract

Significance Intense insecticide usage is suggested to be a significant contributor to the observed decline of insect populations around the world. Beneficial insects play essential roles in food production and ecosystem health. It is therefore vital to understand the mechanisms by which low doses of insecticide impact insect biology in order to understand and assess the threat posed. We investigated the impacts of the neonicotinoid insecticide imidacloprid on Drosophila. The binding of the insecticide to receptors in the brain triggers oxidative stress, reduces energy levels, and induces neurodegeneration as well as vision loss. As the receptors targeted by imidacloprid are conserved among insects, and other insecticides have also been shown to cause oxidative stress, these findings have wider significance. Declining insect population sizes are provoking grave concern around the world as insects play essential roles in food production and ecosystems. Environmental contamination by intense insecticide usage is consistently proposed as a significant contributor, among other threats. Many studies have demonstrated impacts of low doses of insecticides on insect behavior, but have not elucidated links to insecticidal activity at the molecular and cellular levels. Here, the histological, physiological, and behavioral impacts of imidacloprid are investigated in Drosophila melanogaster, an experimental organism exposed to insecticides in the field. We show that oxidative stress is a key factor in the mode of action of this insecticide at low doses. Imidacloprid produces an enduring flux of Ca2+ into neurons and a rapid increase in levels of reactive oxygen species (ROS) in the larval brain. It affects mitochondrial function, energy levels, the lipid environment, and transcriptomic profiles. Use of RNAi to induce ROS production in the brain recapitulates insecticide-induced phenotypes in the metabolic tissues, indicating that a signal from neurons is responsible. Chronic low level exposures in adults lead to mitochondrial dysfunction, severe damage to glial cells, and impaired vision. The potent antioxidant, N-acetylcysteine amide (NACA), reduces the severity of a number of the imidacloprid-induced phenotypes, indicating a causal role for oxidative stress. Given that other insecticides are known to generate oxidative stress, this research has wider implications. The systemic impairment of several key biological functions, including vision, reported here would reduce the resilience of insects facing other environmental challenges.

Keywords: insects; insecticide imidacloprid; low doses; neonicotinoid insecticide; oxidative stress

Journal Title: Proceedings of the National Academy of Sciences of the United States of America
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.