LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanistic differences between methanol and dimethyl ether in zeolite-catalyzed hydrocarbon synthesis

Photo by richardrschunemann from unsplash

Significance Methanol conversion to hydrocarbons has emerged as a key reaction for synthetic energy carriers and light alkenes. The autocatalytic nature and complex reaction network make a mechanistic understanding very… Click to show full abstract

Significance Methanol conversion to hydrocarbons has emerged as a key reaction for synthetic energy carriers and light alkenes. The autocatalytic nature and complex reaction network make a mechanistic understanding very challenging and widely debated. Water is not only part of the overall conversion, it is also frequently used as diluent, influencing, in turn, activity, selectivity, and stability of the catalysts. Water directly and indirectly influences the processes that initiate the C–C formation via adjusting the chemical potential of methanol and dimethyl ether, with the latter being more efficient to generate highly reactive C1 species via hydride transfer. The insight shows paths to optimize the stability of catalysts and to tailor the product distribution for H-ZSM-5–based catalysts. Water influences critically the kinetics of the autocatalytic conversion of methanol to hydrocarbons in acid zeolites. At very low conversions but otherwise typical reaction conditions, the initiation of the reaction is delayed in presence of H2O. In absence of hydrocarbons, the main reactions are the methanol and dimethyl ether (DME) interconversion and the formation of a C1 reactive mixture—which in turn initiates the formation of first hydrocarbons in the zeolite pores. We conclude that the dominant reactions for the formation of a reactive C1 pool at this stage involve hydrogen transfer from both MeOH and DME to surface methoxy groups, leading to methane and formaldehyde in a 1:1 stoichiometry. While formaldehyde reacts further to other C1 intermediates and initiates the formation of first C–C bonds, CH4 is not reacting. The hydride transfer to methoxy groups is the rate-determining step in the initiation of the conversion of methanol and DME to hydrocarbons. Thus, CH4 formation rates at very low conversions, i.e., in the initiation stage before autocatalysis starts, are used to gauge the formation rates of first hydrocarbons. Kinetics, in good agreement with theoretical calculations, show surprisingly that hydrogen transfer from DME to methoxy species is 10 times faster than hydrogen transfer from methanol. This difference in reactivity causes the observed faster formation of hydrocarbons in dry feeds, when the concentration of methanol is lower than in presence of water. Importantly, the kinetic analysis of CH4 formation rates provides a unique quantitative parameter to characterize the activity of catalysts in the methanol-to-hydrocarbon process.

Keywords: formation; dimethyl ether; methanol dimethyl; transfer

Journal Title: Proceedings of the National Academy of Sciences of the United States of America
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.