LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantifying the effectiveness of betaherpesvirus-vectored transmissible vaccines

Photo by jannerboy62 from unsplash

Significance Spillover of infectious diseases from wildlife populations into humans is an increasing threat to human health and welfare. Current approaches to manage these emerging infectious diseases are largely reactive,… Click to show full abstract

Significance Spillover of infectious diseases from wildlife populations into humans is an increasing threat to human health and welfare. Current approaches to manage these emerging infectious diseases are largely reactive, leading to deadly and costly time lags between emergence and control. Here, we use mathematical models and data from previously published experimental and field studies to evaluate the scope for a more proactive approach based on transmissible vaccines that eliminates pathogens from wild animal populations before spillover can occur. Our models are focused on transmissible vaccines designed using herpes virus vectors and demonstrate that these vaccines—currently under development for several important human pathogens—may have the potential to rapidly control zoonotic pathogens within the reservoir hosts. Transmissible vaccines have the potential to revolutionize how zoonotic pathogens are controlled within wildlife reservoirs. A key challenge that must be overcome is identifying viral vectors that can rapidly spread immunity through a reservoir population. Because they are broadly distributed taxonomically, species specific, and stable to genetic manipulation, betaherpesviruses are leading candidates for use as transmissible vaccine vectors. Here we evaluate the likely effectiveness of betaherpesvirus-vectored transmissible vaccines by developing and parameterizing a mathematical model using data from captive and free-living mouse populations infected with murine cytomegalovirus (MCMV). Simulations of our parameterized model demonstrate rapid and effective control for a range of pathogens, with pathogen elimination frequently occurring within a year of vaccine introduction. Our results also suggest, however, that the effectiveness of transmissible vaccines may vary across reservoir populations and with respect to the specific vector strain used to construct the vaccine.

Keywords: effectiveness betaherpesvirus; betaherpesvirus vectored; vectored transmissible; transmissible vaccines

Journal Title: Proceedings of the National Academy of Sciences of the United States of America
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.