LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Functional observability and target state estimation in large-scale networks

Photo by cosmicwriter from unsplash

Significance Observing the states of a network is fundamental to our ability to explore and control the dynamics of complex natural, social, and technological systems. The problem of determining whether… Click to show full abstract

Significance Observing the states of a network is fundamental to our ability to explore and control the dynamics of complex natural, social, and technological systems. The problem of determining whether the system is observable has been addressed by network control researchers over the past decade. Progress on the further problem of actually designing and implementing efficient algorithms to infer the states from limited measurements has been hampered by the high dimensionality of large-scale networks. Noting that often only a small number of state variables in a network are essential for control, intervention, and monitoring purposes, this work develops a graph-based theory and highly scalable methods that achieve accurate estimation of target variables of network systems with minimal sensing and computational resources. The quantitative understanding and precise control of complex dynamical systems can only be achieved by observing their internal states via measurement and/or estimation. In large-scale dynamical networks, it is often difficult or physically impossible to have enough sensor nodes to make the system fully observable. Even if the system is in principle observable, high dimensionality poses fundamental limits on the computational tractability and performance of a full-state observer. To overcome the curse of dimensionality, we instead require the system to be functionally observable, meaning that a targeted subset of state variables can be reconstructed from the available measurements. Here, we develop a graph-based theory of functional observability, which leads to highly scalable algorithms to 1) determine the minimal set of required sensors and 2) design the corresponding state observer of minimum order. Compared with the full-state observer, the proposed functional observer achieves the same estimation quality with substantially less sensing and fewer computational resources, making it suitable for large-scale networks. We apply the proposed methods to the detection of cyberattacks in power grids from limited phase measurement data and the inference of the prevalence rate of infection during an epidemic under limited testing conditions. The applications demonstrate that the functional observer can significantly scale up our ability to explore otherwise inaccessible dynamical processes on complex networks.

Keywords: estimation large; large scale; state; scale networks; functional observability

Journal Title: Proceedings of the National Academy of Sciences of the United States of America
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.