Significance Immunosuppressive Foxp3-expressing regulatory T cells (Tregs) in tumor tissues are assumed to be clonally expanding via recognizing tumor-associated antigens. By single-cell RNA sequencing, we have searched for the molecules… Click to show full abstract
Significance Immunosuppressive Foxp3-expressing regulatory T cells (Tregs) in tumor tissues are assumed to be clonally expanding via recognizing tumor-associated antigens. By single-cell RNA sequencing, we have searched for the molecules that are specifically expressed by such multiclonal tumor Tregs, but not by tumor-infiltrating effector T cells or natural Tregs in other tissues. The search revealed the chemokine receptor CCR8 as a candidate. Treatment of tumor-bearing mice with cell-depleting anti-CCR8 antibody indeed selectively removed multiclonal tumor Tregs without affecting effector T cells or tissue Tregs, eradicating established tumors with induction of potent tumor-specific effector/memory T cells and without activating autoimmune T cells. Thus, specific depletion of clonally expanding tumor Tregs is clinically instrumental for evoking effective tumor immunity without autoimmune adverse effects. Foxp3-expressing CD25+CD4+ regulatory T cells (Tregs) are abundant in tumor tissues. Here, hypothesizing that tumor Tregs would clonally expand after they are activated by tumor-associated antigens to suppress antitumor immune responses, we performed single-cell analysis on tumor Tregs to characterize them by T cell receptor clonotype and gene-expression profiles. We found that multiclonal Tregs present in tumor tissues predominantly expressed the chemokine receptor CCR8. In mice and humans, CCR8+ Tregs constituted 30 to 80% of tumor Tregs in various cancers and less than 10% of Tregs in other tissues, whereas most tumor-infiltrating conventional T cells (Tconvs) were CCR8–. CCR8+ tumor Tregs were highly differentiated and functionally stable. Administration of cell-depleting anti-CCR8 monoclonal antibodies (mAbs) indeed selectively eliminated multiclonal tumor Tregs, leading to cure of established tumors in mice. The treatment resulted in the expansion of CD8+ effector Tconvs, including tumor antigen-specific ones, that were more activated and less exhausted than those induced by PD-1 immune checkpoint blockade. Anti-CCR8 mAb treatment also evoked strong secondary immune responses against the same tumor cell line inoculated several months after tumor eradication, indicating that elimination of tumor-reactive multiclonal Tregs was sufficient to induce memory-type tumor-specific effector Tconvs. Despite induction of such potent tumor immunity, anti-CCR8 mAb treatment elicited minimal autoimmunity in mice, contrasting with systemic Treg depletion, which eradicated tumors but induced severe autoimmune disease. Thus, specific removal of clonally expanding Tregs in tumor tissues for a limited period by cell-depleting anti-CCR8 mAb treatment can generate potent tumor immunity with long-lasting memory and without deleterious autoimmunity.
               
Click one of the above tabs to view related content.