LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microscopic mechanisms of cooperative communications within single nanocatalysts

Photo from wikipedia

Significance Catalysis is an experimental approach to accelerate chemical reactions. It plays a critical role in modern industries. Recent experimental studies uncovered striking observations of cooperative communications for reactions on… Click to show full abstract

Significance Catalysis is an experimental approach to accelerate chemical reactions. It plays a critical role in modern industries. Recent experimental studies uncovered striking observations of cooperative communications for reactions on nanocatalysts. In these experiments, it was shown that the chemical reactions observed at specific active sites might effectively stimulate the same reactions at the neighboring sites. We developed a theoretical model to investigate the microscopic mechanisms of these phenomena. Our idea is that the catalytic communication is the result of the complex dynamics of charged holes. Explicit calculations are able to quantitatively explain all experimental observations, clarifying the molecular origin of cooperative communications. The presented theoretical framework might be utilized for developing efficient catalytic systems with better control over chemical reactions. Catalysis is a method of accelerating chemical reactions that is critically important for fundamental research as well as for industrial applications. It has been recently discovered that catalytic reactions on metal nanoparticles exhibit cooperative effects. The mechanism of these observations, however, remains not well understood. In this work, we present a theoretical investigation on possible microscopic origin of cooperative communications in nanocatalysts. In our approach, the main role is played by positively charged holes on metal surfaces. A corresponding discrete-state stochastic model for the dynamics of holes is developed and explicitly solved. It is shown that the observed spatial correlation lengths are given by the average distances migrated by the holes before they disappear, while the temporal memory is determined by their lifetimes. Our theoretical approach is able to explain the universality of cooperative communications as well as the effect of external electric fields. Theoretical predictions are in agreement with experimental observations. The proposed theoretical framework quantitatively clarifies some important aspects of the microscopic mechanisms of heterogeneous catalysis.

Keywords: cooperative communications; communications within; microscopic mechanisms; mechanisms cooperative; within single; chemical reactions

Journal Title: Proceedings of the National Academy of Sciences of the United States of America
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.