Significance Human-induced carbon emissions are causing global temperatures to rise and oceans to acidify. To understand how these rapid perturbations affect marine calcifying communities, we investigate a similar event in… Click to show full abstract
Significance Human-induced carbon emissions are causing global temperatures to rise and oceans to acidify. To understand how these rapid perturbations affect marine calcifying communities, we investigate a similar event in Earth’s geologic past, the Paleocene–Eocene thermal maximum (PETM). We introduce a method, isotopic filtering, to mitigate the time-averaging effects of sediment mixing on deep-sea microfossil records. Contrary to previous studies, we find that tropical planktic foraminifers in the central Pacific ocean were adversely affected by PETM conditions, as evidenced by a decrease in local diversity, extratropical migration, and impaired calcification. While these species survived the PETM through migration to cooler waters, it is unclear whether marine calcifiers can withstand the rapid changes our oceans are experiencing today.
               
Click one of the above tabs to view related content.