LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Targeting stem-loop 1 of the SARS-CoV-2 5′ UTR to suppress viral translation and Nsp1 evasion

Photo from wikipedia

Significance The COVID-19 pandemic and the ever-evolving variants of SARS-CoV-2 are taking a toll on human health. Despite the successful rollout of vaccines, effective therapies are still urgently needed. Our… Click to show full abstract

Significance The COVID-19 pandemic and the ever-evolving variants of SARS-CoV-2 are taking a toll on human health. Despite the successful rollout of vaccines, effective therapies are still urgently needed. Our studies here showing that Nsp1 selectively blocks translation of host but not viral proteins by proper coordination of its N- and C-terminal domains to advance our understanding on SARS-CoV-2 pathogenesis. Our finding that stem-loop 1, a highly conserved sequence in the SARS-CoV-2 5′ UTR, is necessary and sufficient for bypassing Nsp1-mediated shutdown led to the design of antisense oligonucleotides targeting this sequence that make viral translation susceptible to Nsp1 shutdown, interfere with viral replication, and protect SARS-CoV-2–infected mice. This strategy of turning SARS-CoV-2’s own virulence against itself could be harnessed therapeutically.

Keywords: sars cov; stem loop; viral translation; cov utr; translation

Journal Title: Proceedings of the National Academy of Sciences of the United States of America
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.