LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The non-Riemannian nature of perceptual color space

Photo from wikipedia

Significance For over 100 y, the scientific community has adhered to a paradigm, introduced by Riemann and furthered by Helmholtz and Schrodinger, where perceptual color space is a three-dimensional Riemannian… Click to show full abstract

Significance For over 100 y, the scientific community has adhered to a paradigm, introduced by Riemann and furthered by Helmholtz and Schrodinger, where perceptual color space is a three-dimensional Riemannian space. This implies that the distance between two colors is the length of the shortest path that connects them. We show that a Riemannian metric overestimates the perception of large color differences because large color differences are perceived as less than the sum of small differences. This effect, called diminishing returns, cannot exist in a Riemannian geometry. Consequently, we need to adapt how we model color differences, as the current standard, ΔE, recognized by the International Commission for Weights and Measures, does not account for diminishing returns in color difference perception.

Keywords: color space; non riemannian; color differences; color; space; perceptual color

Journal Title: Proceedings of the National Academy of Sciences of the United States of America
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.