LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

CRISPR-Cas9 editing of the arginine–vasopressin V1a receptor produces paradoxical changes in social behavior in Syrian hamsters

Photo by sangharsh_l from unsplash

Significance Arginine–vasopressin (AVP) acting on V1a receptors (Avpr1as) represents a key signaling mechanism in a brain circuit that increases the expression of social communication and aggression. We produced Syrian hamsters… Click to show full abstract

Significance Arginine–vasopressin (AVP) acting on V1a receptors (Avpr1as) represents a key signaling mechanism in a brain circuit that increases the expression of social communication and aggression. We produced Syrian hamsters that completely lack Avpr1as (Avpr1a knockout [KO] hamsters) using the CRISPR-Cas9 system to more fully examine the role of Avpr1a in the expression of social behaviors. We confirmed the absence of Avpr1as in these hamsters by demonstrating 1) a complete lack of Avpr1a-specific receptor binding throughout the brain, 2) a behavioral insensitivity to centrally administered AVP, and 3) an absence of the well-known blood-pressure response produced by activating Avpr1as. Unexpectedly, however, Avpr1a KO hamsters displayed more social communication behavior and aggression toward same-sex conspecifics than did their wild-type (WT) littermates.

Keywords: crispr cas9; v1a; arginine vasopressin; receptor; syrian hamsters

Journal Title: Proceedings of the National Academy of Sciences of the United States of America
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.