LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

RibU is an essential determinant of Listeria pathogenesis that mediates acquisition of FMN and FAD during intracellular growth.

Photo by bneale87 from unsplash

SignificanceRiboflavin (vitamin B2) is converted into flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which are essential cofactors for many redox reactions across all domains of life. Listeria monocytogenes is… Click to show full abstract

SignificanceRiboflavin (vitamin B2) is converted into flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which are essential cofactors for many redox reactions across all domains of life. Listeria monocytogenes is a facultative intracellular pathogen that cannot synthesize riboflavin and must therefore obtain flavins from the host. In this study, we show that a previously identified riboflavin transporter (RibU) is essential for virulence and intracellular growth, but rather than transporting riboflavin, RibU transports FMN and FAD directly from the host cell cytosol. Mutants unable to convert riboflavin to FMN and FAD retained their capacity to grow intracellularly and were virulent, but they were unable to grow extracellularly and were thus converted from facultative to obligate intracellular pathogens.

Keywords: fmn fad; fmn; ribu essential; intracellular growth

Journal Title: Proceedings of the National Academy of Sciences of the United States of America
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.