LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Will microfluidics enable functionally integrated biohybrid robots?

Photo from wikipedia

The next robotics frontier will be led by biohybrids. Capable biohybrid robots require microfluidics to sustain, improve, and scale the architectural complexity of their core ingredient: biological tissues. Advances in… Click to show full abstract

The next robotics frontier will be led by biohybrids. Capable biohybrid robots require microfluidics to sustain, improve, and scale the architectural complexity of their core ingredient: biological tissues. Advances in microfluidics have already revolutionized disease modeling and drug development, and are positioned to impact regenerative medicine but have yet to apply to biohybrids. Fusing microfluidics with living materials will improve tissue perfusion and maturation, and enable precise patterning of sensing, processing, and control elements. This perspective suggests future developments in advanced biohybrids.

Keywords: biohybrid robots; microfluidics enable; integrated biohybrid; medicine; enable functionally; functionally integrated

Journal Title: Proceedings of the National Academy of Sciences of the United States of America
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.