LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Genes and evolutionary fates of the amanitin biosynthesis pathway in poisonous mushrooms

Photo from wikipedia

Significance Why do unrelated poisonous mushrooms (Amanita, Galerina, and Lepiota) make the same deadly toxin, α-amanitin? One of the most effective and fast strategies for organisms to acquire new abilities… Click to show full abstract

Significance Why do unrelated poisonous mushrooms (Amanita, Galerina, and Lepiota) make the same deadly toxin, α-amanitin? One of the most effective and fast strategies for organisms to acquire new abilities is through horizontal gene transfer (HGT). With the help of genome sequencing and the finding of two genes for the amanitin biosynthetic pathway, we demonstrate that the pathway distribution resulted from HGT probably through an unknown ancestral fungal donor. In Amanita mushrooms, the pathway evolved, through a series of gene manipulations, to produce very high levels of toxins, generating “the deadliest mushroom known to mankind.”

Keywords: poisonous mushrooms; fates amanitin; genes evolutionary; amanitin biosynthesis; biosynthesis pathway; evolutionary fates

Journal Title: Proceedings of the National Academy of Sciences of the United States of America
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.