Significance The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) accelerated development of messenger RNA (mRNA) vaccines, which have proven to be highly effective against COVID-19. However, antibody… Click to show full abstract
Significance The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) accelerated development of messenger RNA (mRNA) vaccines, which have proven to be highly effective against COVID-19. However, antibody responses vary widely and wane over time. This study evaluated the range and kinetics of the primary antibody response to SARS-CoV-2 mRNA-based vaccination in parallel with the B cells that are involved in generating and maintaining this response. These include plasmablasts, the antibody-secreting cells that arise rapidly yet transiently following immunization, and memory B cells, a heterogeneous population that can provide long-lasting immunity. Our results show that the antibody response was tightly linked to early plasmablasts, while the cellular response was sustained by a distinct population of memory B cells.
               
Click one of the above tabs to view related content.