LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient catalysts of surface hydrophobic Cu-BTC with coordinatively unsaturated Cu(I) sites for the direct oxidation of methane.

Photo from wikipedia

Selective oxidation of methane to organic oxygenates over metal-organic frameworks (MOFs) catalysts at low temperature is a challenging topic in the field of C1 chemistry because of the inferior stability… Click to show full abstract

Selective oxidation of methane to organic oxygenates over metal-organic frameworks (MOFs) catalysts at low temperature is a challenging topic in the field of C1 chemistry because of the inferior stability of MOFs. Modifying the surface of Cu-BTC via hydrophobic polydimethylsiloxane (PDMS) at 235 °C under vacuum not only can dramatically improve its catalytic cycle stability in a liquid phase but also generate coordinatively unsaturated Cu(I) sites, which significantly enhances the catalytic activity of Cu-BTC catalyst. The results of spectroscopy characterizations and theoretical calculation proved that the coordinatively unsaturated Cu(I) sites made H2O2 dissociative into •OH, which formed Cu(II)-O active species by combining with coordinatively unsaturated Cu(I) sites for activating the C-H bond of methane. The high productivity of C1 oxygenates (CH3OH and CH3OOH) of 10.67 mmol gcat.-1h-1 with super high selectivity of 99.6% to C1 oxygenates was achieved over Cu-BTC-P-235 catalyst, and the catalyst possessed excellent reusability.

Keywords: unsaturated sites; coordinatively unsaturated; oxidation methane; btc

Journal Title: Proceedings of the National Academy of Sciences of the United States of America
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.