Potassium channels in auditory neurons are rapidly modified by changes in the auditory environment. In response to elevated auditory stimulation, short-term mechanisms such as protein phosphorylation and longer-term mechanisms such… Click to show full abstract
Potassium channels in auditory neurons are rapidly modified by changes in the auditory environment. In response to elevated auditory stimulation, short-term mechanisms such as protein phosphorylation and longer-term mechanisms such as accelerated channel synthesis increase the amplitude of currents that promote high-frequency firing. It has been suggested that this allows neurons to fire at high rates in response to high sound levels. We have carried out simple simulations of the response to postsynaptic neurons to patterns of neurotransmitter release triggered by auditory stimuli. These demonstrate that the amplitudes of potassium currents required for optimal encoding of a low-amplitude auditory signal differ from those for louder sounds. Specifically, the cross-correlation of the output of a neuron with an auditory stimulus is improved by increasing potassium currents as sound amplitude increases. Temporal fidelity for low-frequency stimuli is improved by increasing potassium currents that activate at negative potentials, while that for high-frequency stimuli requires increases in currents that activate at positive membrane potentials. These effects are independent of the firing rate. Moreover, levels of potassium currents that maximize the fidelity of the output of an ensemble of neurons differ from those that maximize fidelity for a single neuron. This suggests that the modulatory mechanisms must coordinate channel activity in groups of neurons or an entire nucleus. The simulations provide an explanation for the modulation of the intrinsic excitability of auditory brainstem neurons by changes in environmental sound levels, and the results may extend to information processing in other neural systems.
               
Click one of the above tabs to view related content.