LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Coxiella burnetii effector EmcB is a deubiquitinase that inhibits RIG-I signaling.

Photo by victor_g from unsplash

Eukaryotes have cytosolic surveillance systems to detect invading microorganisms and initiate protective immune responses. In turn, host-adapted pathogens have evolved strategies to modulate these surveillance systems, which can promote dissemination… Click to show full abstract

Eukaryotes have cytosolic surveillance systems to detect invading microorganisms and initiate protective immune responses. In turn, host-adapted pathogens have evolved strategies to modulate these surveillance systems, which can promote dissemination and persistence in the host. The obligate intracellular pathogen Coxiella burnetii infects mammalian hosts without activating many innate immune sensors. The Defect in Organelle Trafficking/Intracellular Multiplication (Dot/Icm) protein secretion system is necessary for C. burnetii to establish a vacuolar niche inside of host cells, which sequesters these bacteria in a specialized organelle that could evade host surveillance systems. However, bacterial secretion systems often introduce agonists of immune sensors into the host cytosol during infection. For instance, nucleic acids are introduced to the host cytosol by the Dot/Icm system of Legionella pneumophila, which results in type I interferon production. Despite host infection requiring a homologous Dot/Icm system, C. burnetii does not induce type I interferon production during infection. Here, it was found that type I interferons are detrimental to C. burnetii infection and that C. burnetii blocks type I interferon production mediated by retionic acid inducible gene I (RIG-I) signaling. Two Dot/Icm effector proteins, EmcA and EmcB, are required for C. burnetii inhibition of RIG-I signaling. EmcB is sufficient to block RIG-I signaling and is a ubiquitin-specific cysteine protease capable of deconjugating ubiquitin chains from RIG-I that are necessary for signaling. EmcB preferentially cleaves K63-linked ubiquitin chains of three or more monomers, which represent ubiquitin chains that potently activate RIG-I signaling. Identification of a deubiquitinase encoded by C. burnetii provides insights into how a host-adapted pathogen antagonizes immune surveillance.

Keywords: surveillance; rig signaling; coxiella burnetii; dot icm; host; burnetii

Journal Title: Proceedings of the National Academy of Sciences of the United States of America
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.