LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Suppressing transverse mode instability through multimode excitation in a fiber amplifier.

Photo from wikipedia

High-power fiber laser amplifiers have enabled an increasing range of applications in industry, science, and defense. The power scaling for fiber amplifiers is currently limited by transverse mode instability. Most… Click to show full abstract

High-power fiber laser amplifiers have enabled an increasing range of applications in industry, science, and defense. The power scaling for fiber amplifiers is currently limited by transverse mode instability. Most techniques for suppressing the instability are based on single- or few-mode fibers in order to output a clean collimated beam. Here, we study theoretically using a highly multimode fiber amplifier with many-mode excitation for efficient suppression of thermo-optical nonlinearity and instability. We find that the mismatch of characteristic length scales between temperature and optical intensity variations across the fiber generically leads to weaker thermo-optical coupling between fiber modes. Consequently, the transverse mode instability (TMI) threshold power increases linearly with the number of equally excited modes. When the frequency bandwidth of a coherent seed laser is narrower than the spectral correlation width of the multimode fiber, the amplified light maintains high spatial coherence and can be transformed to any target pattern or focused to a diffraction-limited spot by a spatial mask at either the input or output end of the amplifier. Our method simultaneously achieves high average power, narrow spectral width, and good beam quality, which are required for fiber amplifiers in various applications.

Keywords: mode instability; instability; fiber; transverse mode; fiber amplifier

Journal Title: Proceedings of the National Academy of Sciences of the United States of America
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.